2,616 research outputs found

    Fundamental R&D Spillovers and the Internationalization of a FirmÌs Research Activities

    Get PDF
    A conceptual framework is proposed for analyzing how differences in national R&D stocks can impact on a firmÌs decision to internationalize its R&D activities. A central finding is that the integration of product markets can generate an added incentive to undertake R&D abroad. A three-stage analysis of a non-cooperative game is proposed, which entails cost-reducing process innovation in an international model of duopoly. Each firmÌs technological efficiency depends not only on its investment in applied R&D, but also on its absorption of domestic and foreign fundamental R&D, as well as the extent to which the latter are substitutes or complements. In a first stage, a firmÌs absorption of foreign fundamental R&D can be impacted by a decision to localize R&D activities abroad. The interrelation between this decision and initial production costs is also explored.Fundamental R&D, spillovers, international location, economic integration

    Do intensity targets control uncertainty better than quotas ? Conditions, calibrations, and caveats

    Get PDF
    Among policy instruments to control future greenhouse gas emissions, well-calibrated general intensity targets are known to lead to lower uncertainty on the amount of abatement than emissions quotas (Jotzo and Pezzey 2004). The authors test whether this result holds in a broader framework, and whether it applies to other policy-relevant variables as well. To do so, they provide a general representation of the uncertainty on future GDP, future business-as-usual emissions, and future abatement costs. The authors derive the variances of four variables, namely (effective) emissions, abatement effort, marginal abatement costs, and total abatement costs over GDP under a quota, a linear (LIT) and a general intensity target (GIT)-where the emissions ceiling is a power-law function of GDP. They confirm that GITs can yield a lower variance than a quota for marginal costs, but find that this is not true for total costs over GDP. Using economic and emissions scenarios and forecast errors of past projections, the authors estimate ranges of values for key parameters in their model. They find that quotas dominate LITs over most of this range, that calibrating GITs over this wide range is difficult, and that GITs would yield only modest reductions in uncertainty relative to quotas.Transport and Environment,Climate Change,Environment and Energy Efficiency,Economic Theory&Research,Energy and Environment

    International Human Capital Formation, Brain Drain and Brain Gain: A conceptual Framework

    Get PDF
    A two-country, two-period model of international migration highlights microeconomic foundations for examining the interrelation between brain drain, brain gain and the location of human capital formation, at home or abroad. Ex ante choices regarding where to study depend on relative qualities of university systems, individuals' abilities, sunk educational investment costs, government grants, and expected employment prospects in both countries. The analysis underscores an inherently widerange of conceivable positive or negative effects on domestic net welfare. These changes depend critically on the foregoing factors, as well as the optimal design of educational grant schemes, given eventual informational imperfections regarding individuals' capabilities.

    Coupled anoxic nitrification/manganese reduction in marine sediments

    Get PDF
    Pore water and solid phase distributions of oxygen, manganese, and nitrogen from hemipelagic and shelf sediments sometimes indicate a close coupling between the manganese and nitrogen redox cycles. Reaction coupling must be sustained in part by biological reworking of Mn-oxide-rich surface sediments into underlying anoxic zones. Surface sediment from Long Island Sound (USA) was used in laboratory experiments to simulate such intermittent natural mixing processes and subsequent reaction evolution. Mixed sediment was incubated anoxically under either diffusively open (plugs) or closed conditions (jars). In closed anoxic incubations, pore water NO3 2 increased regularly to a maximum (up to 17 mM) after one to several days, and was subsequently depleted. Mn21 was produced simultaneously with NO3 2. NO2 2 was also clearly produced and subsequently reduced, with a formation-depletion pattern consistent with coupled nitrificationdenitrification in the anoxic sediment. Manipulative additions of Mn-oxides (5–10 mmol g21 net) demonstrated that net anoxic NO3 2 production correlated directly with initial Mn-oxide content. During initial net NO3 2 production there was no evidence for SO4 22 reduction. A direct correlation was also observed between anoxic nitrification rates and estimated sulfate reduction rates; the larger nitrification rates, the larger the eventual net sulfate reduction rates. Diffusively-open incubations using sediment plugs of four different thicknesses (2, 5, 10 and 20 mm) exposed to anoxic overlying water, also showed net production of pore water NO3 2 (;15–20 mM) despite the absence of NO3 2 in the overlying water for at least five days. In general, higher nitrate concentrations were maintained in the open relative to the closed incubations, due most likely to lower concentrations of dissolved reductants for NO3 2 in the open system. These experiments imply simultaneous coupling between the benthic nitrogen, manganese, and sulfur redox cycles, involving anoxic nitrification and sulfide oxidation to SO4 22. Anoxic nitrate production during Mn reduction indicates that nitrification and denitrification can occur simultaneously in subsurface sediments, without vertical stratification. The existence of anoxic nitrification implies new reaction pathways capable of increasing coupled sedimentary nitrificationdenitrification, particularly in bioturbated or physically mixed deposits

    The influence of macrofaunal burrow spacing and diffusive scaling on sedimentary nitrification and denitrification: An experimental simulation and model approach

    Get PDF
    The influence of burrow spacing on nitrification and denitrification was simulated experimentally using sediment plugs of different thicknesses immersed in aerated seawater reservoirs. Different plug thicknesses mimic different distances between oxygenated burrow centers and produce similar changes in aerobic–anaerobic reaction balances as a function of diffusive transport scaling. The thicknesses used were roughly equivalent to transport scales (interburrow spacing) that could be produced by burrow abundances of ~400 to 50,000 m-2, depending on burrow lumen radii (e.g., 0.05–1 cm). Following the exposure of anoxic sediment plugs to aerated water, an efficient aerobic nitrification zone was established within the first ~2–3 millimeters of sediment. At pseudo-steady state, the thinnest plug (2 mm) simulating highest burrow density, was entirely oxic and the denitrification rate nil. Denitrification was stimulated in anoxic regions of the thicker plugs (5, 10, and 20 mm) compared to the initial value in experimental sediment. Maximum nitrification rates and the highest denitrification/nitrification ratio between oxic nitrification and adjacent denitrification zones occurred for the intermediate plug thickness of 5 mm. Of the oxic/anoxic composites, the thickest plug showed the least efficient coupling between nitrification/denitrification zones (lowest denitrification/nitrification ratio). Both the thickness of the oxic layer and the total net remineralization of dissolved inorganic N varied inversely with plug thickness. A set of diffusion–reaction models was formulated assuming a range of possible nitrification kinetic functions. All model forms predicted optimal nitrification–denitrification and ammonification–denitrification coupling with relative oxic–anoxic zonation scales comparable to intermediate plug thicknesses (5–6 mm). However, none of the commonly assumed kinetic forms for nitrification could produce the observed NO-3 profiles in detail, implying that natural sediment populations of nitrifiers may be less sensitive to O2 than laboratory strains. Our experimental and model results clearly show that rates of N remineralization and the balance between stimulation/inhibition of denitrification are highly dependent on sedimentary biogenic structure and the particular geometries of irrigated burrow distributions

    Micromechanical investigation of the influence of defects in high cycle fatigue

    Get PDF
    This study aims to analyse the influence of geometrical defects (notches and holes) on the high cycle fatigue behaviour of an electrolytic copper based on finite element simulations of 2D polycrystalline aggregates. In order to investigate the role of each source of anisotropy on the mechanical response at the grain scale, three different material constitutive models are assigned successively to the grains: isotropic elasticity, cubic elasticity and crystal plasticity in addition to the cubic elasticity. The significant influence of the elastic anisotropy on the mechanical response of the grains is highlighted. When considering smooth microstructures, the crystal plasticity have has a slight effect in comparison with the cubic elasticity influence. However, in the case of notched microstructures, it has been shown that the influence of the plasticity is no more negligible. Finally, the predictions of three fatigue criteria are analysed. Their ability to predict the defect size effect on the fatigue strength is evaluated thanks to a comparison with experimental data from the literature

    Fluctuation dynamics of a single magnetic chain

    Get PDF
    "Tunable" fluids such as magnetorheological "MR" and electrorheological "ER" fluids are comprised of paramagnetic or dielectric particles suspended in a low-viscosity liquid. Upon the application of a magnetic or electric field, these fluids display a dramatic, reversible, and rapid increase of the viscosity. This change in viscosity can, in fact, be tuned by varying the applied field, hence the name "tunable fluids". This effect is due to longitudinal aggregation of the particles into chains in the direction of the applied field and the subsequent lateral aggregation into larger semisolid domains. A recent theoretical model by Halsey and Toor "HT" explains chain aggregation in dipolar fluids by a fluctuation-mediated long-range interaction between chains and predicts that this interaction will be equally efficient at all applied fields. This paper describes video-microscopy observations of long, isolated magnetic chains that test HT theory. The measurements show that, in contrast to the HT theory, chain aggregation occurs more efficiently at higher magnetic field strength (H0) and that this efficiency scales as H0½. Our experiments also yield the steady-state and time-dependent fluctuation spectra C(x,x')≡ [h(x)-h(x')]²>½ and C(x,x',t,t')≡ ½ for the instantaneous deviation h(x,t) from an axis parallel to the field direction to a point x on the chain. Results show that the steady-state fluctuation growth is similar to a biased random walk with respect to the interspacing ͉ |x-x'| along the chain, C(x,x')≈|x-x'| α, with a roughness exponent α =0.53±0.02. This result is partially confirmed by Monte Carlo simulations. Time-dependent results also show that chain relaxation is slowed down with respect to classical Brownian diffusion due to the magnetic chain connectivity, C(x,x',t,t')≈|t-t'|β, with a growth exponent β=0.35±0.05<½. All data can be collapsed onto a single curve according to C(x,x',t,t')≈|x-x'| α ψ (|t-t'| / |x-x'| z ), with a dynamic exponent z= α /β≅ 1.42

    Space optical instruments optimisation thanks to CMOS image sensor technology

    Get PDF
    Today, both CCD and CMOS sensors can be envisaged for nearly all visible sensors and instruments designed for space needs. Indeed, detectors built with both technologies allow excellent electro-optics performances to be reached, the selection of the most adequate device being driven by their functional and technological features and limits. The first part of the paper presents electro-optics characterisation results of CMOS Image Sensors (CIS) built with an optimised CMOS process, demonstrating the large improvements of CIS electro-optics performances. The second part reviews the advantages of CMOS technology for space applications, illustrated by examples of CIS developments performed by EADS Astrium and Supaéro/CIMI for current and short term coming space programs

    High performances monolithic CMOS detectors for space applications

    Get PDF
    During the last 10 years, research about CMOS image sensors (also called APS -Active Pixel Sensors) has been intensively carried out, in order to offer an alternative to CCDs as image sensors. This is particularly the case for space applications as CMOS image sensors feature characteristics which are obviously of interest for flight hardware: parallel or semi-parallel architecture, on chip control and processing electronics, low power dissipation, high level ofradiation tolerance... Many image sensor companies, institutes and laboratories have demonstrated the compatibility of CMOS image sensors with consumer applications: micro-cameras, video-conferencing, digital-still cameras. And recent designs have shown that APS is getting closer to the CCD in terms ofperformance level. However, the large majority ofthe existing products do not offer the specific features which are required for many space applications. ASTRI1JM and SUPAERO/CIMI have decided to work together in view of developing CMOS image sensors dedicated to space business. After a brief presentation of the team organisation for space image sensor design and production, the latest results of a high performances 512x512 pixels CMOS device characterisation are presented with emphasis on the achieved electro-optical performance. Finally, the on going and short-term coming activities of the team are discussed
    corecore